Hydrophilic TiO2 porous spheres anchored on hydrophobic polypropylene membrane for wettability induced high photodegrading activities.

نویسندگان

  • Fang Niu
  • Le-Sheng Zhang
  • Chao-Qiu Chen
  • Wei Li
  • Lin Li
  • Wei-Guo Song
  • Lei Jiang
چکیده

TiO(2) porous nanospheres on polypropylene (PP) films (TiO(2)/PP composite) are produced at ambient temperature. Particle/pore size match up is the key anchoring point to overcome the low affinity between hydrophilic materials and hydrophobic materials. With the hydrophilic TiO(2) catalyst evenly dispersed on a hydrophobic surface, the aqueous solution will selectively skip the substrate and wet the catalysts. Such a wettability-induced smart system maximizes the degrading activity of the TiO(2) catalyst. In photodegrading reactions, the resulting TiO(2)/PP composite film exhibits a 10 times higher activity in flow-type setup than the same TiO(2) catalyst in a traditional batch-type setup.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Facile Approach of Thin Film Coating Consisted of Hydrophobic Titanium Dioxide over Polypropylene Membrane for Membrane Distillation

In this work, the hydrophobic modification of TiO2 nanoparticles (HTiO2) was carried out by reacting with dodecylphosphonic acid (DDPA) and hexylamine solution. A facile approach of the self-assembly technique was used for the coating of hydrophobic HTiO2 layer over the microporous polypropylene (PP) membrane. The self-assembled layer was formed between the interface of trimesoyl chloride (TMC)...

متن کامل

Preparation and characterization of nano-porous Polyacrylonitrile (PAN) membranes with hydrophilic surface

Polyacrylonitrile (PAN) membranes with nano-porous surface and high hydrophilicity were fabricated by addition of polyoxyethylene (40) nonylphenyl ether (IGEPAL) as an additive in the casting solution. The membranes were prepared from PAN/IGEPAL/1-Methyl-2-pyrrolidone (NMP) via phase inversion induced by immersion precipitation technique. Pure water was used as coagulation medium. The effects o...

متن کامل

Preparation and characterization of nano-porous Polyacrylonitrile (PAN) membranes with hydrophilic surface

Polyacrylonitrile (PAN) membranes with nano-porous surface and high hydrophilicity were fabricated by addition of polyoxyethylene (40) nonylphenyl ether (IGEPAL) as an additive in the casting solution. The membranes were prepared from PAN/IGEPAL/1-Methyl-2-pyrrolidone (NMP) via phase inversion induced by immersion precipitation technique. Pure water was used as coagulation medium. The effects o...

متن کامل

The Impact of Wettability on Effective Properties of Cathode Catalyst Layer in a Proton Exchange Membrane Fuel Cell

The produced liquid water in cathode catalyst layer (CCL) has significant effect on the operation of proton exchange membrane fuel cell (PEMFC). To investigate this effect, the transport of oxygen in CCL in the presence of immiscible liquid water is studied applying a two-dimensional pore scale model. The CCL was reconstructed as an agglomerated system. To explore the wettability effects, diffe...

متن کامل

CO2 biofixation by Dunaliella Salina in batch and semi-continuous cultivations, using hydrophobic and hydrophilic poly ethylene (PE) hollow fiber membrane photobioreactors

In this work, performance of hollow fiber membrane photobioreactor (HFMPB) on the growth of Dunaliella Salina (G26) at various aeration rates (0.1 and 0.2 VVm) and medium re-circulation flow rates (500 and 1000 mL/h) were studied. Cultivation was carried out at both batch and semi-continuous modes in HFMPBs containing neat and hydrophilized in-house fabricated poly ethylene (PE) membranes at fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 2 8  شماره 

صفحات  -

تاریخ انتشار 2010